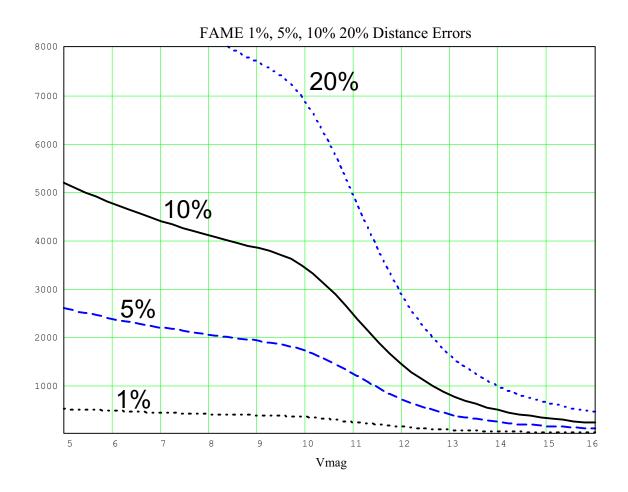

Marc A. Murison

Astronomical Applications U.S. Naval Observatory Washington, D.C. February 14, 1996

Project Context


	errors	Vmag	ΔT yr	stars	type	global?	cost
cur. ground	~a few mas	?	decades	hundreds	pointed	no	?
Hipparcos	2 mas	~9	2.5	118,000	survey	yes	300 M?
FAME	30-50 μas	~12	2.5	a few 10 ⁶	survey	yes	70 M
Newcomb	10-20 μas	14	2.5	a few 10 ³	pointed	yes	80 M
fut. ground	~10 µas	~20	10-20	hundreds?	pointed	no	100 M
POINTS	0.3 μas	18	5-10	10 ⁵	pointed	yes	280 M
OSI	<0.5 μas	20?	5-10	10 ⁴ ?	pointed	yes	1-2 G

• astrometric error vs. magnitude:

•30 µas → 10% error at 3.3 kpc

• Distances (in pc) for 1%, 5%, 10%, 20% distance errors (vs. magnitude):

[FAME Volume Plot]

- Serendipity
- Extragalactic Distance Scale
 - reddening a problem for all known Cepheids
 - calibrate Cepheid PLC relation (current: ~10%)
- Galactic Mass Distribution
 - distances & PMs of all spectral types
 - Oort A and B constants
 - distance scale for Galaxy
 - local Galactic rotation curve
 - local escape speed
 - local mass density
 - disk dark matter fraction

[FAME Cepheids Plot]

Galactic Structure

- Spiral arms: traveling density waves, or propagating star formation?
 - need 5% distance, 1% PM measurements of Perseus Arm
 (~2 kpc) peculiar motions
- rotation curve beyond Solar circle
- galactic thick disk component
 - need < 10% distances to > 2 kpc

Globular Clusters

- FAME: distances and PMs of 5 nearest (1.9 to 3.4 kpc)
- 50 μ as/yr at 3.3 kpc = 0.8 km/sec!

Open Clusters

- old clusters important for Galactic disk evolution
- 19 old clusters with ages > 1 Gyr lie within \sim 1.7 kpc
- need 5% distances
- young clusters: tracers of star formation and spiral arms

Stellar Masses

- binary systems
- FAME: 2-3 order of magnitude improvement

Stellar Luminosities

- coverage of all spectral types(!)
- refine the mass-luminosity-metallicity-age relation
- finally, definitive absolute magnitude calibrations of early spectral types (O-A)

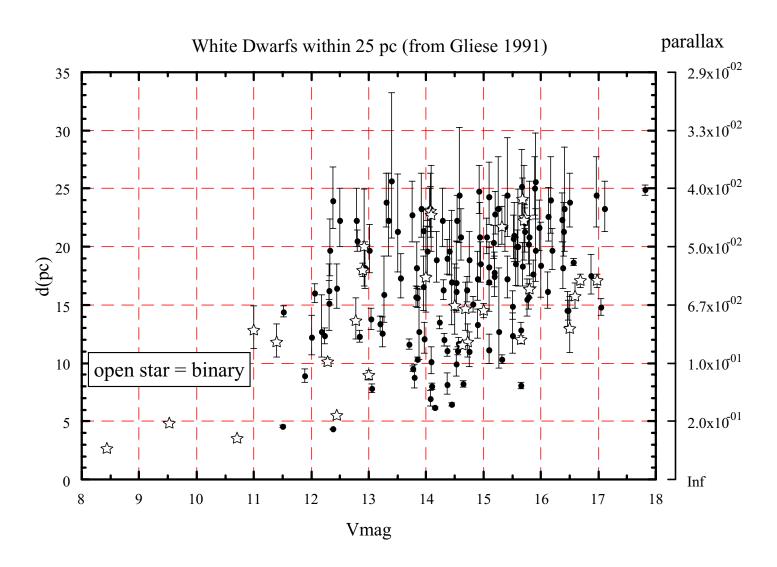
Evolution of Interacting Binary Systems

- novae & nova-like variables
- Be star x-ray binary systems
- Wolf-Rayet stars
- LMXRBs
- problem: current paucity of definitive mass and orbit determinations

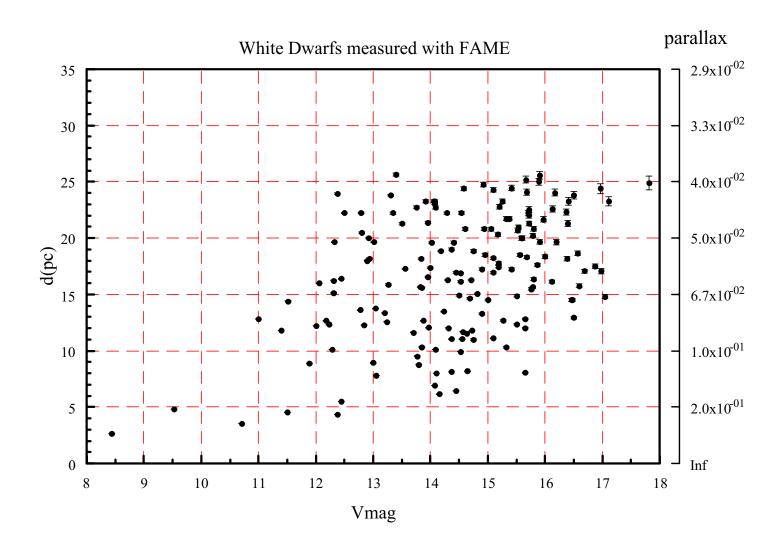
Exotic Objects

• black hole candidates within reach of FAME:

V616 Mon Nova Mus 1991 Cyg X-1 V404 Cyg


m_{v}	d (kpc)	M/M_{sun}	$\sigma_{d}\left(\% ight)$
11.3-20	1.0	>3-9	5
13.4-20	1.4	?	20
9	2.5	9	7
11.5-18	1-3	8-15?	5-15

• Global Reference Frame


- FK5: ~10 mas at epoch ~1940
- optical/radio frame disparity ~ 10 mas
- with PM errors, ~ IO mas at time of FAME
- FAME: ~50 μas, tied to radio frame

- White Dwarfs
 - distances currently very uncertain
 - 162 known within 25 pc
 - M-R relation poorly calibrated, due mostly to uncertain distances
 - mass distribution has implications for
 - progenitor population(s)
 - Galactic evolution
 - FAME would nail the WD distance problem.

• White dwarf distances:

• What FAME could do:

